Задачи на логику и рассуждения

Мудрость

Бессмысленно продолжать делать то же самое и ждать других результатов.
Альберт Эйнштейн

Еще известная задача такого уровня: (Возможно это легенда, но очень уж красивая)

Во времена Второй Мировой Войны, английские ученые подбросили немецким ученым, чтобы они не решали военные проблемы, а решали головоломки, следующую логическую задачу.

Кладоискатели нашли клад и записку в которой было написано: В этих 20 мешках с золотыми монетами есть один мешок с фальшивыми монетами. Известно, что фальшивая монета в два раза тяжелее настоящей.



Задача:

Как при помощи одного взвешивания определить в каком мешке находятся фальшивые монеты?



Примечание: взвешиванием называется тот момент, когда весы, типа коромысла, станут горизонтально, показывая, что на правой стороне весов и на левой стороне одинаковый вес.



И еще: англичане приделали приписку к задаче, что они потратили 10 тысяч человеко-часов для решения этой задачи.
Имеется 8 с виду одинаковых монет. Одна из них фальшивая и известно, что она легче настоящей. Как с помощью всего лишь двух взвешиваний найти фальшивую монету? В Вашем распоряжении только лабораторные весы, которые показывают только больше-меньше.
Три человека купили сосуд, полностью заполненный 24 унциями бальзама. Позже они приобрели три пустых сосуда объемом 5, 11 и 13 унций. Как они могли бы поделить бальзам на равные части используя эти четыре сосуда? Постарайтсь решить задачу за наименьшее количество переливаний.
В одном порту моряк пришел в лавку с пустым бочонком на пять галлонов и попросил лавочника налить туда четыре галлона отборного ямайского рома. К несчастью, единственным сосудом для измерения был старый оловянный кувшин на три галлона. Как лавочник сумел точно отмерить четыре галлона с помощью этих двух емкостей?
Имеюся 6 гирь весом 1, 2, 3, 4, 5 и 6 г. На них нанесена соответствующая маркировка. Однако есть основания считать, что при маркировке гирь допущена одна ошибка. Как при помощи двух взвешиваний на чашечных весах, на которых можно сравнить веса любых групп гирь, определить, верна ли имеющаяся на гирях маркировка?
Имеется 9 одинаковых монет, одна из которых фальшивая и по этой причине легче остальных. Мы располагаем двумя весами без гирь, позволяющими сравнивать по весу любые группы монет. Однако одни из имеющихся весов являются грубыми, на них нельзя отличить фальшивую монету от настоящей. Их точность не позволяет уловить разницу в весе. Зато другие весы точные. Но какие весы грубые, а какие точные - неизвестно. Как в этой ситуации с помощью трех взвешиваний определить фальшивую монету?
К продавцу, студенту-математику, подрабатывющему летом торговлей у бочки с квасом, подходят два веселых приятеля и просят налить им по литру кваса каждому. Продавец замечает, что у него есть лишь две емкости, трехлитровая и пятилитровая, и он не может выполнить их просьбу. Приятели предлагают 100 долларов, если продавец сможет выполнить их заказ, причем выдать им порции продавец должен одновременно. После некоторого размышления, продавец сумел это сделать. Каким образом? Заметим, что при переливаниях квас не теряется и что полные емкости позволяют точно отмерять объемы 3 и 5 литров.
Заря-зарница,

Красная девица,

Врата запирала,

По полю гуляла,

Ключи потеряла.

Месяц видел,

А солнце скрало.
Как вы думаете, что ваши друзья и знакомые используют чаще чем вы, но это является вашей собственностью?
Итак, можете ли вы установить, по какому принципу выстроена данная последовательность :

8 2 9 0 1 5 7 3 4 6