Задачи на взвешивание и переливание

Мудрость

Все люди лгут, но это не страшно, никто друг друга не слушает.
Альберт Эйнштейн

Как из полного сосуда ёмкостью в 12 л отлить половину, пользуясь двумя пустыми сосудами ёмкостью в 8 и 5 л.
Имеется набор из 1999 монет. Известно, что 1410 из них - фальшивые. Фальшивая монета по весу отличается на 1 г от подлинной, причем одни фальшивые монеты могут быть легче, а другие тяжелее подлинных. У нас есть чашечные весы, которые умеют показывать разницу в весе. Как за одно взвешивание определить подлинность любой монеты из набора?
Имеются трёхлитровая банка сока и две пустые банки: одна - литровая, другая - двухлитровая. Как разлить сок так, чтобы во всех трёх банках было по одному литру?
Двое должны разделить поровну 8 вёдер кваса, находящегося в большом бочонке. Но у них есть ещё только два пустых бочонка, в один из которых входит 5 вёдер, а в другой - 3 ведра. Спрашивается, как они могут разделить этот квас, пользуясь только этими тремя бочонками? Решите задачу двумя способами.
Три человека купили сосуд, полностью заполненный 24 унциями бальзама. Позже они приобрели три пустых сосуда объемом 5, 11 и 13 унций. Как они могли бы поделить бальзам на равные части используя эти четыре сосуда? Постарайтесь решить задачу за наименьшее количество переливаний.
Как развесить 20 фунтов чая в 10 коробок по 2 фунта в каждой за девять развесов имея только гири на 5 и на 9 фунтов? Используются обычные весы с двумя чашами - как у статуи Правосудия :)
Король, его сын принц и дочь принцесса находились в темнице высокой башни. Они весили 195, 105 и 90 фунтов соответственно. Еду им поднимали в двух корзинах, прикрепленных к концам длинного каната. Канат был перекинут через балку, вбитую под самой крышей. Получалось так, что, когда одна корзина находилась на земле, вторая находилась на уровне оконца в камере пленников. Эти корзины оставались единственной надеждой на спасение. Естественно как только одна корзина становилась тяжелее другой она опускалась. Однако если разница в весе превышает 15 фунтов, корзина стремительно неслась вниз. Единственное что помогло бы пленникам бежать из плена, было находившееся в камере пушечное ядро весом 75 фунтов - его можно было попытаться использовать как противовес. Как пленникам удалось бежать?
На столе лежит десять пронумерованных шляп. В каждой шляпе лежит по десять золотых монет. В одной из шляп находятся фальшивые монеты. Настоящая весит 10 граммов, а поддельная только 9. В помощь даны весы со шкалой в граммах. Как определить в какой из шляп находятся фальшивые монеты, используя весы только для одного взвешивания? Весы могут взвешивать не более 750 грамм.
К продавцу, студенту-математику, подрабатывющему летом торговлей у бочки с квасом, подходят два веселых приятеля и просят налить им по литру кваса каждому. Продавец замечает, что у него есть лишь две емкости, трехлитровая и пятилитровая, и он не может выполнить их просьбу. Приятели предлагают 100 долларов, если продавец сможет выполнить их заказ, причем выдать им порции продавец должен одновременно. После некоторого размышления, продавец сумел это сделать. Каким образом? Заметим, что при переливаниях квас не теряется и что полные емкости позволяют точно отмерять объемы 3 и 5 литров.
Имеется 9 одинаковых монет, одна из которых фальшивая и по этой причине легче остальных. Мы располагаем двумя весами без гирь, позволяющими сравнивать по весу любые группы монет. Однако одни из имеющихся весов являются грубыми, на них нельзя отличить фальшивую монету от настоящей. Их точность не позволяет уловить разницу в весе. Зато другие весы точные. Но какие весы грубые, а какие точные - неизвестно. Как в этой ситуации с помощью трех взвешиваний определить фальшивую монету?