Имеется 13 монет, из них ровно одна фальшивая, причем неизвестно, легче она настоящих или тяжелее. Требуется найти эту монету за три взвешивания. Весы - стандартные для задач этого типа: две чашечки без гирь.
Отложим в сторону тринадцатую монету, а остальные обозначим следующим образом: FAKE MIND CLOT
Теперь взвешиваем одну четверку против другой (буквы обозначают монеты, входящие в каждую четверку): MA DO - LIKE, ME TO - FIND, FAKE - COIN. Теперь совершенно просто найти фальшивую монету, если она входит в эти двенадцать монет. К примеру, если результаты взвешивания были: слева легче, равно, слева легче, то фальшивой может быть только монета "A", которая легче других.
А что если фальшивой окажется все-таки отложенная нами, тринадцатая монета? Все очень просто: в этом случае при всех трёх взвешиваниях весы будут сбалансированы. К сожалению в этом случае нам не узнать легче или тяжелее тринадцатая монета, но в условии такого требования и не было :-)